Derive the equation of the straight line in the form of y = mx + c and then sketch the graph. The gradient and the coordinates of a point is given:
| 1) | m = -4 ; (1 , -2) | 2) | m = 2 ; (2 , 7) |
| 3) | m = -5 ; (-2 , 5) | 4) | m = 3 ; (4 , 8) |
| 5) | m = 3 ; (1 , 8) | 6) | m = 3 ; (-2 , 7) |
| 7) | m = -4 ; (-2 , -5) | 8) | m = -2 ; (5 , 7) |
| 9) | m = 5 ; (-4 , 0) | 10) | m = -3 ; (-3 , 3) |
| 11) | m = 5 ; (-2 , 6) | 12) | m = -1 ; (-1 , -4) |
| 13) | m = -3 ; (-1 , -6) | 14) | m = -2 ; (-1 , -4) |
| 15) | m = -1 ; (6 , 4) | 16) | m = -1 ; (3 , 3) |
| 17) | m = -3 ; (-2 , 8) | 18) | m = 1 ; (5 , 2) |
| 19) | m = -3 ; (5 , 2) | 20) | m = 5 ; (2 , 2) |
Derive the equation of the straight line in the form of y = mx + c, from the coordinates of the two points:
| 1) | (0 , 6) , (-5 , 0) | 2) | (-6 , 7) , (-6 , 3) |
| 3) | (-5 , 4) , (-7 , 8) | 4) | (-1 , 7) , (-5 , 4) |
| 5) | (3 , 6) , (-6 , -3) | 6) | (-4 , 5) , (-6 , -3) |
| 7) | (-1 , 6) , (-5 , -1) | 8) | (1 , 7) , (-5 , 6) |
| 9) | (-2 , 6) , (-5 , 4) | 10) | (-1 , 8) , (-7 , 8) |
| 11) | (2 , 4) , (-5 , 5) | 12) | (0 , 6) , (-7 , 6) |
| 13) | (-4 , 6) , (-6 , 1) | 14) | (0 , 5) , (-5 , 9) |
| 15) | (-4 , 4) , (-7 , 10) | 16) | (2 , 6) , (-6 , 7) |
| 17) | (-2 , 4) , (-6 , 10) | 18) | (-3 , 6) , (-7 , 9) |
| 19) | (-1 , 6) , (-6 , 3) | 20) | (-5 , 5) , (-7 , 2) |
The equation of a straight line is y = 5x -5. Find the equations of both a parallel line and a perpendicular line that go through the following points:
| 1) | (-2 , 5) | 2) | (7 , 0) |
| 3) | (-5 , 3) | 4) | (3 , 6) |
Joke:
You are warned!; if a mathematician says your child can become a banker or plumber, he means both and would call it 'OR' rule.